|
1 month ago | |
---|---|---|
.. | ||
00_SystemCore | 1 month ago | |
01_DataFeeds | 1 month ago | |
02_CognitiveFilters | 1 month ago | |
03_ModelLab | 1 month ago | |
04_RealityEngine | 1 month ago | |
README.md | 1 month ago |
基于您提供的技术背景和需求,我将为您设计一个开箱即用的Obsidian认知工程系统。以下是完整的架构实现方案:
├── 0_CognitiveOS
│ ├── 00_SystemCore
│ │ ├── CorePrinciples.md # 系统核心原则
│ │ └── Architecture.map # 架构脑图
│ ├── 01_DataFeeds
│ │ ├── RSS_Automation # 自动化信息流
│ │ └── API_Connectors # 数据源接入
│ ├── 02_CognitiveFilters
│ │ ├── Bayesian_Validator.py # 贝叶斯验证器
│ │ └── Fallacy_Database.md # 逻辑谬误库
│ ├── 03_ModelLab
│ │ ├── MetaModels # 元模型库
│ │ └── Sandbox # 沙盘推演
│ ├── 04_RealityEngine
│ │ ├── PredictionTracker.md # 预测追踪
│ │ └── FeedbackLoops.js # 反馈循环
│ └── 05_NeuroInterface
│ ├── VisualThinking # 视觉化思考
│ └── CognitiveAPI # 认知接口
# 安装必备插件
npm install
# 创建认知工程专用库
mkdir -p CognitiveOS/{00_SystemCore,01_DataFeeds,02_CognitiveFilters,03_ModelLab,04_RealityEngine,05_NeuroInterface}
# cognitive_feeds.py
import feedparser
from obsidian_tools import ObsidianClient
class CognitiveFeeder:
def __init__(self):
self.sources = {
'arxiv': 'http://export.arxiv.org/rss/cs.AI',
'nature': 'https://www.nature.com/nature.rss'
}
self.obsidian = ObsidianClient(vault_path="~/CognitiveOS")
def process_feed(self):
for name, url in self.sources.items():
feed = feedparser.parse(url)
for entry in feed.entries:
# 生成标准笔记格式
content = f"""---
tags: [feed/{name}]
confidence: {self.calculate_confidence(entry)}
---
# {entry.title}
**核心论点提取**
{self.extract_thesis(entry.summary)}
[[认知验证模板]]"""
self.obsidian.create_note(
path=f"01_DataFeeds/{name}/{entry.id}.md",
content=content
)
@staticmethod
def extract_thesis(text):
# 使用NLP提取核心论点
return gpt4_analyze(text).summary
创建 02_CognitiveFilters/Cognitive_Validation_Template.md
:
```meta
type: validation-template
version: 2.1
```
## 认知验证矩阵
### 三轴验证
- [ ] 时间轴验证:找到 ≥3 个历史类似事件
- [ ] 空间轴验证:检查 ≥2 个不同文化背景的案例
- [ ] 能量轴验证:分析经济/能量流动数据匹配度
### 逻辑完整性检查
```dataview
TABLE logic_score FROM #fallacy-check
WHERE file = this.file
```
### 验证记录
```button
name 启动贝叶斯验证
type command
action Shell Command: python Bayesian_Validator.py {{file.path}}
```
// 03_ModelLab/knowledge_graph.js
const { Graph } = require('obsidian');
const graph = new Graph(app);
class KnowledgeEnhancer {
constructor() {
this.graph = graph;
}
enhanceConnections() {
this.graph.nodes.forEach(node => {
if(node.tags.includes('meta-model')) {
this.createQuantumLinks(node);
}
});
}
createQuantumLinks(node) {
// 为元模型创建跨维度链接
const superposedLinks = [
{relation: "counterpart", probability: 0.3},
{relation: "emergence", probability: 0.6},
{relation: "paradox", probability: 0.1}
];
superposedLinks.forEach(link => {
node.addLink({
target: this.findRandomNode(),
relation: link.relation,
quantumState: true,
probability: link.probability
});
});
}
}
创建 04_RealityEngine/Metabolism_Dashboard.md
:
```dataview
TABLE
round((updated - created)/86400000) AS "知识活性天数",
confidence * 10 AS "认知能量值"
FROM "01_DataFeeds/"
WHERE file.mday >= date(today) - dur(30 days)
SORT file.mday DESC
```
```plotly
{
"data": [{
"type": "histogram",
"x": dv.pages('"03_ModelLab/MetaModels"').file.ctime
}],
"layout": {"title": "元模型代谢周期"}
}
```
每日维护脚本:
#!/bin/zsh
# daily_cognitive_maintenance
# 更新信息源
python cognitive_feeds.py
# 运行知识增强
node knowledge_graph.js
# 生成代谢报告
obsidian-generate-report --output 04_RealityEngine/Daily_Report.md
认知健康检查:
# cognitive_healthcheck.py
def check_system_health():
metrics = {
'信息新鲜度': calculate_freshness(),
'认知多样性': calculate_diversity(),
'预测准确率': load_prediction_score()
}
if metrics['预测准确率'] < 0.7:
trigger_paradigm_shift()
if metrics['认知多样性'] < 0.4:
inject_cognitive_vaccine()
初始化系统:
git clone https://github.com/cognitive-os/obsidian-engine.git
cd obsidian-engine
pip install -r requirements.txt
npm install
配置认知管道:
# config/cognitive_sources.yaml
data_feeds:
- type: rss
url: https://arxiv.org/rss/cs.AI
processor: arxiv_processor.py
- type: api
endpoint: https://api.nobelprize.org/v1/laureate.json
refresh: daily
启动量子态知识库:
python quantum_knowledge.py --superposition --entanglement
关键升级提示:
cognitive_healthcheck.py
每月进行知识架构的重力重组:
python cognitive_restructure.py --mode=quantum_leap
该系统的特别之处在于:
请通过以下命令开启您的认知工程之旅:
cogos init --mode=full --quantum